主题:数学闲话(闲话开始前的闲话) -- 明日枯荷包

大河奔流 导读 复 111 阅 144555

全看 分页 树展 一览 主题

2010-08-18 04:53:27
3041619 复 3041550
明日枯荷包
明日枯荷包`36973`/bbsIMG/face/0000.gif`70`4977`4023`92586`正五品上:中散大夫|定远将军`2009-07-15 04:04:56`
某些时候的确会形成“两种数学门类” 1

不满足交换律,运算规则当然就不同,不过跟参与的元素的关系不大。正如我所说的,代数结构关心的是结构,也就是元素之间的关系,元素具体是什么其实不要紧,两个其中元素不同的集合,上面都有运算产生关系,只要关系形成的结构一样,那么从代数学的角度来看,其实这两个集合上的代数结构就是同构的,就可以看作是一样的。好像数学家觉得一块石头加一块石头是1+1,一颗钻石加一颗钻石也是1+1,从数学角度来看这两件事作的运算一样;而对其他一些人,这两件事情可能就大不相同喽。

满足交换律的群或者环,当然性质比较好,象乘法满足交换律的环(文中我忽略没有说的是,环的加法被规定为一定要是满足交换律的)以及和它相关的课题,专门有一个数学分支研究它,叫“交换代数”,与之相应的,也有“非交换代数”,这也可以算“两种数学门类”吧。


2010-08-18 04:53:27

全看 分页 树展 一览 主题