主题:几何直观地介绍广义相对论的时空以及大爆炸模型 (0) -- changshou

2012-02-13 19:58:28changshou
几何直观地介绍广义相对论的时空及大爆炸模型 (11.5)

几何直观地介绍广义相对论中的时空以及大爆炸模型 (11.5)闵可夫斯基时空的物理来源

上文已经解释了闵可夫斯基时空 和狭义相对论的关系。但有的读者对 闵可夫斯基时空的物理来源 仍感到迷惑。因此我写了这一篇。

狭义相对论的一个基本假设是:世界上存在一种观察者, 名叫惯性观察者,他们之间相对匀速直线运动。我们可以这样定义他们:不受外力的物质点(观察者), 就是惯性观察者。有了惯性观察者, 就可以 以他们的世界线为时间轴 建立每个惯性观察者自带的时空坐标系(从而有了时空分解),叫惯性参照系。(当然从实际角度讲,你必须先提供一个物质点不受外力的判据。这不是一个实验观测能解决的问题, 因为此时还没有建立研究运动的任何参照系。 通常能做的是指定一个看上去 受其它物体影响很小的东西 作为近似的不受外力的东西,比如在地球上,就指定地球。)这个假设可以说是先验的。以后我们会看到广义相对论不要这假设

狭义相对论的又一个基本假设是:光在不同惯性参照系下速度不变这个假设来源于电磁场的理论。电磁场的麦克斯韦方程说 电磁波(包括可见光)在不同惯性参照系下速度不变。这个假设也受实验支持。 如果我们用勾股定理 在某个惯性参照系里 定义空间距离, 我们就发现 之前我们定义的某点处的光锥 就是经过该点的所有方向的光的世界线的集合。 光在不同惯性参照系下速度不变 意味着 光锥也不变。可是 我们前面讲过光锥可以用 “三正一负”的“勾股定理”定义的闵可夫斯基时空距离 来定义。 而我们又知道 不同整体坐标系下 闵可夫斯基时空距离不变(意味着光锥也不变)。

如果 我们把惯性参照系 作为时空中的 整体坐标系, 然后用这些整体坐标系 和“三正一负”的“勾股定理”来定义距离, 我们就得到闵可夫斯基时空。 反过来, 如果我们假定时空是 闵可夫斯基时空,然后用整体坐标系来定义惯性参照系,我们就既建立了 惯性参照系(而且惯性参照系间相对匀速直线运动), 又实现了光在不同惯性参照系下速度不变

这就是闵可夫斯基时空的物理来源。

帖:3666491 复 3659016
帖内引用